

Cessy equipment and network status

Eric Cano PH/CMD

Current status

- Networks for CMS
 - Network layout
 - Network start-up
- Network for MTCC
 - Network layout
 - Servers
 - Future
- System aspects / equipment
 - Login and home directories
 - Execution of software
 - Future
 - Hardware maintenance and reliability

CMS Network: Run

- The 4 networks
 - CMS-Experiment Network (CMS-EN)
 - LHC-Technical network (TN)

- CERN's general purpose network (GPN)
- Central data recording (technically, a very restricted part of GPN)

CMS Network: start-up

- Looking at getting the networks underground for beginning June (all of them, plus wireless)
- Necessary fibers available to bring the network in USC (on loan from IT)
- Temporary router in USC's starpoint (idem)
- Directly final network IP assignment
- Use of IT/CS's web interface, like in the CERN-GPN
- CMS network will be 10.176.0.0/16 (for CMS-EN), and up to 10.191.0.0/16 for all networks (DATA, etc...)

MTCC/DAQpreseries network

Servers (head nodes)

- cmsdaqpreseries
 - DHCP server, DNS server, LDAP server
 - logbook server
 - NFS server for home directories
- cmsdisk0 and 1
 - NFS servers for physics data and sending to CASTOR
- oracms: oracle server
- cmsdaq
 - web proxy for external access of internal pages
 - Incoming HTTP and HTTPS from outside CERN as well
- cmsdaquser0
 - General purpose login machine
- cmsdaqrc0-3
 - Run control servers
- ecaldcs01, trkdcs01, hcaldcs01, rpcdcs01, aligndcs01, cscdcs01, hcaldcs01, dtdcs01, centdcs01, centdcs02
 - DCS servers
 - Connection to preseries network not yet done, probably not required

Network evolution

- Project for CMS-EN in green barrack
 - Make cmsdaqpreseries part of CMS-EN
 - Implies IP re-numbering
 - Transparent for applications relying on DNS (normally all of them)
 - Mostly impacts the windows machines
 - "Trust" in CMS-EN for central IT windows domain servers
 - Allows move of windows machines (i.e. DCS) to the private network
 - Not on CERN network anymore
 - Depends on the controlled systems as well (???)

Login and home directories

- Login with the AFS account name and password on one head node
- Home directory local to cluster on /home (backed up by central IT service)
- The AFS home directory is available as well, but only on head nodes
- Ssh to nodes on the private network thanks to public/private keys in home directory
 - no AFS/Kerberos involved beyond head nodes
- No quotas for the moment
 - Rely on people's good will or not?

Execution of software

- Software installed in and run from home directories of common accounts
 - Currently: daqpro daqdev toppro topdev healdev healpro ecaldev ecalpro rpcdev rpcpro dtdev dtpro escdev escpro trackerdev trackerpro triggerdev triggerpro ltcdev ltcpro pixeldev pixelpro daqdev2
- Each common account has a corresponding group
 - Members of the group can work on the common home directory
 - Have to do: "newgrp daqpro; umask 0002"
 - Shell macros in the works (for bash and tcsh): "become daqpro"
 - Execution and stop/kill of application as the common account using sudo:
 - sudo –u daqpro xdaq.exe...

System evolution

- Login system in CMS (final) yet undecided
 - Rely on the CMS-wide AFS/Kerberos system
 - ...or use our own Kerberos environment for authentication
- Deployment of software via Quattor
 - Fellow to come (has developer experience in Quattor)
 - This is required as when system grow to full size, NFS won't be able to cope anymore
 - Implies stability of software
 - Requires packaging as RPMs

Hardware maintenance and reliability

- Significant PC batches and corresponding failed hardware inventory (lower bracket estimate, machines are running 24/7)
 - Global: at least 10 power supplies not listed below.
 - 16 * MS-6132/PIII-700/256MB/HDD Quantum Fireball 10GB
 - No HDD changed
 - 16 * 370 DLE/PIII 733/256 MB/HDD Maxtor 32049H2 20GB
 - 1 HDD changed
 - 32 * P3TDLE/PIII 1GHz/256 MB/HDD Maxtor 2B020H1 20 GB
 - 9 HDD changed
 - Some CPU(s) changed
 - ~30 * X5DL8/2*Xeon 2.4GHz/512 MB/HDD Maxtor 6Y080L0 80 GB
 - · No HDD changed
 - Some CPU(s) and motherboard(s) changed
 - 8 * X5DP8/2*Xeon 2.4GHz/2GB/HDD IC35L090AUU2070 80GB
 - No HDD changed
 - ~80*X5DL8/2*2.66GHz/1GB/HDD WD WD400JB-00ENA0 40GB
 - No HDD changed
 - 4 Motherboards died
 - 1 Power supply

Hardware maintenance and reliability (con't)

- Clear "bad batch/good batch" patterns
- Importance of environment control (temperature)
 - from experience, AC failures are often followed by HDD or PSU failures
- Global failure rate for the "worst batches":
 - Motherboards: 5% died in almost 2 years
 - HDD: 28% died in 4 years
- Power supplies a low, continuous flow of replacement